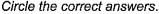
CONCEPTUAL PAYSICS PRACTICE PAGE

Chapter 8 Rotational Motion The Flying Pig

The toy pig flies in a circle at constant speed. This arrangement is called a conical pendulum because the supporting string sweeps out a cone. Neglecting the action of its flapping wings, only two forces act on the pig—gravitational mg, and string tension T.

Vector Component Analysis:

Note that vector \mathbf{T} can be resolved into two components—horizontal T_x and vertical T_y . These vector components are dashed to distinguish them from the tension vector \mathbf{T} .

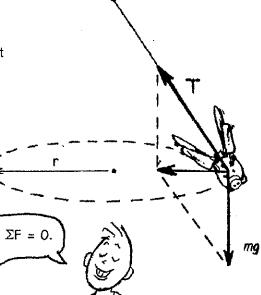


- 1. If T were somehow replaced with T_x and T_y the pig [would] [would not] behave identically to being supported by T.
- 2. Since the pig doesn't accelerate vertically, compared with the magnitude of mg, component T_v must be [greater] [less] [equal and opposite].
- 3. The velocity of the pig at any instant is [along the radius of] [tangent to] its circular path.
- 4. Since the pig continues in circular motion, component T_x must be a [centripetal] [centrifugal] [nonexistent] force, which equals [zero] $[mv^2/r]$. Furthermore, T_x is [along the radius] [tangent to] the circle swept out.

Vector Resultant Analysis:

- 5. Rather than resolving T into horizontal and vertical components, use your pencil to sketch the resultant of mg and T using the *parallelogram rule*.
- 6. The resultant lies in a [horizontal] [vertical] direction and [toward] [away from] the center of the circular path. The resultant of mg and T is a [centripetal] [centrifugal] force.

For straight-line motion with no acceleration, $\Sigma F = 0$. But for uniform circular motion, $\Sigma F = mv^2/r$.



thanx to Pablo Robinson and Miss Piggy

CONCEPTUAL PAUSICS PRACTICE PAGE

Chapter 8 Rotational Motion Banked Airplanes

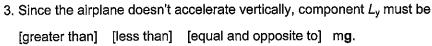
An airplane banks as it turns along a horizontal circular path in the air. Except for the thrust of its engines and air resistance, the two significant forces on the plane are gravitational mg (vertical), and lift L (perpendicular to the wings).

Vector Component Analysis:

With a ruler and a pencil, resolve vector \mathbf{L} into two perpendicular components, horizontal L_x and vertical L_y . Make these vectors dashed to distinguish them from \mathbf{L} .

Circle the correct answers.

- The velocity of the airplane at any instant is
 [along the radius of] [tangent to] its circular path.
- 2. If **L** were somehow replaced with L_x and L_y , the airplane [would] [would not] behave the same as being supported by **L**.



4. Since the plane continues in circular motion, component L_x must equal [zero] $[m\sqrt{2}lr]$ and be a [centripetal] [centrifugal] [nonexistent] force. Furthermore, L_x is [along the radius of] [tangent to] the circular path.

Vector Resultant Analysis:

- Rather than resolving L into horizontal and vertical components, use your pencil to sketch the resultant of mg and L using the parallelogram rule.
- 6. The resultant lies in a [horizontal] [vertical] direction and [toward] [away from] the center of the circular path. The resultant of mg and L is a [centripetal] [centrifugal] force.
- 7. The resultant of mg and L is the same as $[L_x]$ $[L_y]$.

Challenge: Explain in your own words why the resultant of two vectors can be the same as a single component of one of them.

