CONCEPTUAL PRYSICS PRACTICE PAGE

Chapter 4 Newton's Second Law of Motion Friction

- A crate filled with delicious junk food rests on a horizontal floor.
 Only gravity and the support force of the floor act on it, as shown by the vectors for weight W and normal force N.
 - a. The net force on the crate is [zero] [greater than zero].
 - b. Evidence for this is ______.
- 2. A slight pull P is exerted on the crate, not enough to move it.
 - a. The force of friction f acting on the crate is [less than] [equal to] [greater than] P.
 - b. The net force on the crate is [zero] [greater than zero].
- 3. Pull **P** is increased until the crate begins to move. It is pulled so that it moves with constant velocity across the floor.
 - a. Friction f is [less than] [equal to] [greater than] P.
 - b. Constant velocity means acceleration is [zero] [greater than zero].
 - c. The net force on the crate is [less than] [equal to] [greater than] zero.
- 4. Pull ${\bf P}$ is further increased and is now greater than friction ${\bf f}$.
 - a. The net force on the crate is
 [less than] [equal to] [greater than] zero.
 - b. The net force acts toward the right, so acceleration acts toward the [left] [right].
- 5. If the pulling force P is 150 N and the crate doesn't move, what is the magnitude of f?
- 6. If the pulling force P is 200 N and the crate doesn't move, what is the magnitude of f?
- 7. If the force of sliding friction is 250 N, what force is necessary to keep the crate sliding at constant velocity?
- 8. If the mass of the crate is 50 kg and sliding friction is 250 N, what is the acceleration of the crate when the pulling force is 250 N? ______ 500 N? _____

CONCEPTUAL PRISICS PRACTICE PAGE

Chapter 4 Newton's Second Law of Motion Falling and Air Resistance

Bronco skydives and parachutes from a stationary helicopter. Various stages of fall are shown in positions *a* through *f*. Letting downward be positive in direction, and using Newton's Second Law,

$$a = \frac{F_{\text{net}}}{m} = \frac{W - R}{m}$$

find Bronco's acceleration at each position (answer in the blanks to the right). You need to know that Bronco's mass m is 100 kg so his weight is a constant 1000 N. Air resistance R varies with speed and cross-sectional area as shown.

Circle the correct answers:

- When Bronco's speed is least, his acceleration is [least] [most].
- 2. In which position(s) does Bronco experience a downward acceleration?
 - [a]
- [b]
- [c]
- [d]
- [f]
- 3. In which position(s) does Bronco experience an upward acceleration?
 - [a]
- [b]
- [c] [d]
- [e]

[e]

- [f]
- When Bronco experiences an upward acceleration, his velocity is [still downward] [upward also].
- 5. In which position(s) is Bronco's velocity constant?
 - [a]
- [b]
- C
- [d]
- [e] [f]
- 6. In which position(s) does Bronco experience terminal velocity?
 - [a]
- [b]
- [d]
- [e]
- 7. In which position(s) is terminal velocity greatest?

[d]

- [a]
- [b]
- [c]

[c]

- [
- [e] [f]

[f]

8. If Bronco were heavier, his terminal velocity would be

[greater] [less] [the same].

