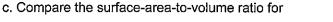
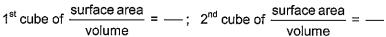
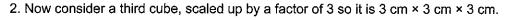
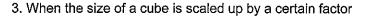
CONCEPTUAL PRUSICS PRACTICE PAGE

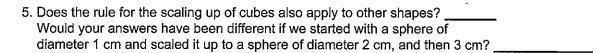

Chapter 12 Solids Scaling

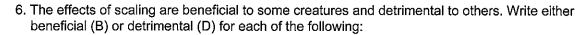

- 1. Consider a cube, say 1 cm × 1 cm × 1 cm (a very small sugar cube). Its volume is 1 cm³. The surface area of one of its faces is 1 cm². The total surface area of the cube is 6 cm², because it has six sides. Now consider a second cube, scaled up by a factor of 2 so it is 2 cm × 2 cm.
 - a. What is the total surface area of each cube?


1 st cube	cm ² ; 2 nd	cube	cm²

b. What are the volumes of each cube?

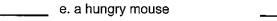

1 st cube		cm ³ ; 2 nd	cube	cm ³
----------------------	--	-----------------------------------	------	-----------------




- a. What is its total surface area? ____ cm²
- b. What is its volume? ____ cm³
- c. What is its surface-area-to-volume ratio?

(2 and then 3 for the above examples), the area increases as the	
of the factor, and the volume increases as the	_ of the factor

4. Does the surface-area-to-volume ratio increase or decrease as things are scaled up?



a. an insect falling from a tree

 d. a big fish chasing a small fish	
	' <u></u>

b. an elephant falling from the same tree _____ e. a hungry mouse

c. a small fish trying to flee from a big fish ______ f. an insect that falls in the water ____

CONCEPTUAL Physics PRACTICE PAGE

Chapter 12 Solids Scaling Circles

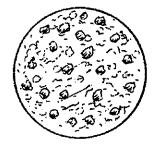
1. Complete the table.

	CIRCLES	
RADIUS	CIRCUMFERENCE	AREA
1 cm	$2\pi (1cm) = 2\pi cm$	$\pi (1cm)^2 = \pi cm^2$
2 cm		
3 cm		
10 cm		

FOR THE CIRCUMFERENCE OF A CIRCLE, C=2TTY

AND FOR THE AREA OF A CIRCLE, A = TT +2

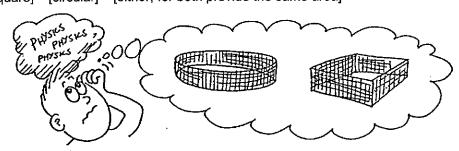
2. From your completed table, when the radius of a circle is doubled,


its area increases by a factor of _____.

When the radius is increased by a factor of 10, the area increases

by a factor of _____.

3. Consider a round pizza that costs \$5.00. Another pizza of the same thickness has twice the diameter. How much should the larger pizza cost?


4. [True] [False] If the radius of a circle is increased by a certain factor, say 5, then the area increases by the *square* of the factor, in this case 5² or 25.

So if you scale up the radius of a circle by a factor of 10, its area will increase by

Application:

5. Suppose you raise chickens and spend \$50 to buy wire for a chicken pen. The shape of the pen that will hold the most chickens inside will be

[square] [circular] [either, for both provide the same area]

